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We Have an Interdisciplinary Team

• Graham Thomas - ENG/MMED
- Project Management
- NDE, materials characterization

• Chris Robbins - ENG/NSED
- Program Management
- Data acquisition, hardware, signal processing software, NDE

• Grace Clark - ENG/NSED
- Image/signal processing, target/pattern recognition,

sensor data fusion, NDE

• Katherine Wade - ENG/NSED
- Signal processing software and testing
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Agenda

• Introduction
- The Cable Damage Detection Problem
- This is work in progress

• Technical Approach - Model-Based Damage Detection

• Damage Detection Processing Results
- Real Measurements, Artificial Damage - Reported Earlier
- Real measurements, real damage
- Performance Measurements

- ROC Curves, Confidence Intervals

• Discussion and Plans
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We Are Testing Two-Conductor Flat Cables
With Kapton Insulation - For Dielectric Anomalies

Two-Conductor Flat Cable
With Kapton Insulation

Foil Simulating a Capacitive
Discontinuity (Damage)

Red TDR Signal => Good Cable
Black TDR Signal => Damaged Cable

Foil (Damage)

No Foil
(No Damage)

Kapton 

Kapton
Dielectric 

KaptonAdhesive
Copper foil

Copper foil

 Expected Damage Types:
-Compressions

-Punctures
- Short Circuits
- Open Circuits
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The Technical Challenges/Issues are Difficult,
But We Do Not Know Yet Exactly How Difficult

• We have access to only one end of the cable

• We cannot “Hi-Pot” the cables in place

• We have no exemplars of “real” damaged cables
- We must “insult” them artificially

• We have no archive signals from the cables “As-Built”
- Only a “typical” signal for an undamaged cable

• Small sample size
- Small number of available cables for “insulting” (~ 60)
- Obviates using supervised learning pattern recognition algorithms
- Makes it difficult to create ensembles for building ROC curves

• Repeatability of Measurements (A VERY IMPORTANT ISSUE)
- Single cable - Test to test [Apparently solved to first order]
- Cable to cable  [Under current investigation - OK to first order]

• The signal shape changes significantly with the cable environment
- We are building 2D and 3D “Mockups” for later use
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The Key Hardware Component is the
Pulse Insersion Unit (PIU) Grace Clark

Pulse 
Generator

50 ps Rise Time

Filter
Impulse
Forming
Network

100 ps Rise Time

0

-9v

t

Cable Under Test

Load

Pulse Insertion Unit (PIU)

Capacitive Coupling & Impedance Matching:
• PIU     = Half of “The Capacitor”
• Cable = Half of “The Capacitor”

Scope

Scope Triggers the Pulse Generator

-2.9v

! 

50"

! 

3"

Pulse Inserted Into Cable

PIU
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Our Focus is on a Binary Detection Decision (Yes/No),
NOT Failure Mode Classification or “Reliability”

1. Detection:
• Decide whether or not an abnormality in the cable 

TDR response exists (yes or no)
• Assume that an abnormal TDR response implies a flaw

in the cable

Three Possible Hierarchical Decision Levels:

2. Flaw or Failure Mode Classification:
• Classify the type of failure mode or flaw detected,

from among a fixed set of possible modes

3. Final Decision:
• Using all of the information from the measurements

and the previous two steps (fusion), decide 
whether the cable is “reliable or not reliable”
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The Model-Based Damage Detection Approach:
Detect a Model Mismatch if Damage is Present
• Exploit the fact that the TDR measurements are reasonably repeatable.

• Build a forward model of the dynamic
system (cable) for the case in which NO DAMAGE exists

• Whiteness Testing on the Innovations (Errors):
Estimate the output of the actual system using 
measurements from a dynamic test.

- If no damage exists, the model will match the measurements, 
so the “innovations” (errors) will be statistically white.

- If a damage exists, the model will not match the measurements,
so the “innovations” (errors) will not be statistically 
white.

• Weighted Sum Square Residuals (WSSR) Test:
The WSSR provides a single metric for the model mismatch
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Step #1: System Identification to Estimate the
Dynamic Model of the Undamaged Cable
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Grace Clark
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Step1 (System ID) is Done “Offline”
Step2 (Damage Testing) is Done “Online”

Pre-
Processing:

• Cutting
• Mean/Trend

Removal
• Decimation

System
Identification

(Model-
Building)

Whiteness
Test

WSSR
Test

Step1 (System ID)

Step2 (Damage Testing)

“Undamaged” Innovations
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Scalar WSSR is Calculated Using a Sliding Window
Over the Innovations Sequence
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The Scalar WSSR Confidence Interval Threshold is
Parameterized by the Window Length W

Summary of the WSSR Test for Significance             :
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We Acquired an Ensemble of Real Signals for Processing
The PIU was never disconnected between acquisitions               Experiment E1:  Data from 2_13_07

UNDAMAGED
     Reference Signals (Undamaged):

refa, refb, refc

MINOR DAMAGE
     Minor Damage (pin hole, knife present, no short):

minor1a, minor1b, minor1c

     Minor Damage (pin hole, knife removed, no short):
minor2a, minor2b, minor2c

     Minor Damage (pin hole, knife removed,
cable rubbed to remove short):

minor3a, minor3b, minor3c

MAJOR DAMAGE
     Major Damage (pin hole, knife removed,

conductors shorted):
major1a,  major1b,  major1c
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Experiment 1:
System Identification Results

Grace A. Clark
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E1_s_xu_xdC.pdf

System Identification: Preprocessed Signals
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! 

x
U
(n) = Unflawed Cable Output

! 

x
D
(n) = Damaged Cable Output Example:

Major
Damage
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System Identification:  The Model Fit is Good
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E1_Ree_Rxy1C.pdf

System Identification: Correlation Tests are Satisfactory
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E1_WT_euC.pdf

System Identification Whiteness Test Result = White
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E1_WSSR_eu(61)C.pdf

System Identification WSSR Test Result = No Model Mismatch!



Lawrence Livermore National Laboratory

Experiment 1:
“Minor3” Damage

Grace A. Clark
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E1_xd_m3a_xuC.pdf
“Minor3 Damage”:  Damage Is Difficult to Distinguish Visually
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E1_ed_m3a_xuC.pdf

Minor3 Damage: The  Innovations are Small, But Correlated
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E1_WSSR_ed_m3a_(61)C.pdf

“Minor3 Damage” WSSR Result = Model Mismatch!

W = 61
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Minor3a,b,c Damage
Receiver Operating Characteristic (ROC) Curve = Perfect
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PD

PFA



26Option:UCRL-CONF-XXXXXX
Grace A. Clark, Ph.D.

Lawrence Livermore National Laboratory

Conclusions & Future Work

Future Work:

• Performance Tests using our new Pulse Insertion Unit (PIU)
• More repeatability studies:

- Measurement-to-measurement for one cable
- Cable-to-cable

• Cable “Insult Studies” with various types of damage
• Experiments in realistic cable environments - 2D Mockup, 3D Mockup
• Build and test GUI’s
• Use algorithms with other applications

• The damage effects are somewhat distributed about the signal
- They are not necessarily localized in time/space
- This gives added value to the model-based approach

because it does not rely on localized damage effects

• Tests with real data validate the algorithms
- “Minor3” and “Major” Damage give perfect ROC curves
- “Minor1” and “Minor2” Damage give suboptimal ROC Curves
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Contingency VG’s

Grace A. Clark
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Step #2: Compare the Responses of the Undamaged and
Damaged Cables ==> Damage Detection
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E1:  “Undamaged”Signals Were Cut for
Step1: System Identification

Ensemble
Average

refa, refb, refc

Cut Reference
Signal s(n)

Cut Undamaged
Signal xu(n)

s = REFavg_Cut.txt xu = xu_real.txt 

ref_avg.txt

Start time = 0. sec
End Time = 24.975586e-9 sec
# Points = 1024
Ts = 0.0244147e-9 sec
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The “Damage Signals” Were Cut for
Step1: Damage Testing

Minor1a-c

Cut Cut Cut Cut

xd_m1a.txt
xd_m1b.txt
xd_m1c.txt

xd_m2a.txt
xd_m2b.txt
xd_m2c.txt

xd_m3a.txt
xd_m3b.txt
xd_m3c.txt

xd_MM1a.txt
xd_MM1b.txt
xd_MM1c.txt

Minor2a-c Minor3a-c Major1a-c

Processing Details for the Signals in Red
are shown in this presentation

Suboptimal Detection
Results for Minor1 and

Minor2 Damage

Perfect Detection
Results for Minor3 and

Major Damage
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Experiment 1:
Major Damage

Grace A. Clark
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E1_xd_MM1a_xuC.pdf

“Major Damage” Signal Shows Obvious Damage

! 

x
D
(n)

! 

x
U
(n)



33Option:UCRL-CONF-XXXXXX
Grace A. Clark, Ph.D.

Lawrence Livermore National Laboratory

E1_ed_MM1a_xu.pdf

“Major Damage” Innovations Are Large and Correlated
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E1_WSSR_ed_MM1a_(61)C.pdf

“Major Damage” WSSR Test Result = Model Mismatch
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Major Damage:
Receiver Operating Characteristic (ROC) Curve = Perfect
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Experiment 1:
ROC Curves for Minor1,Minor2,

and All 12 Damge Signals

Grace A. Clark
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ROC Curve, Probability of Detection vs. Probability of False Alarm
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 Test Significance alpha = 0.05  Interpolation Factor =   6   na,nb,nk =  24, 22, 15   delta = 46

 files used: s = REFavg_Cut1.txt, xuorig = xu_real.txt, xu = refa.txt, xd = xd_m1a.txt
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ROC Curve, Probability of Detection vs. Probability of False Alarm

 W = 24 36 48 49 50 55 56 57 58 59 60 61 62 63 64 65 70 80

 Test Significance alpha = 0.05  Interpolation Factor =   6   na,nb,nk =  24, 22, 15   delta = 46

 files used: s = REFavg_Cut1.txt, xuorig = xu_real.txt, xu = refa.txt, xd = xd_m1a.txt
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Minor2a,b,c Damage
Receiver Operating Characteristic (ROC) Curve

Choose the Operating Point:

W* = 60

Estimated Probability Of Correct
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ROC Curve, Probability of Detection vs. Probability of False Alarm

 W = 24 36 48 49 50 55 56 57 58 59 60 61 62 63 64 65 70 80

 Test Significance alpha = 0.05  Interpolation Factor =   6   na,nb,nk =  24, 22, 15   delta = 46

 files used: s = REFavg_Cut1.txt, xuorig = xu_real.txt, xu = refa.txt, xd = xd_m1a.txt
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All 12 Signals: Minor1a,b,c, Minor2a,b,c, Minor3a,b,c, Majora,b,c
Receiver Operating Characteristic (ROC) Curve

Choose the Operating Point:
W* = 60

Estimated Probability Of Correct
Classification at W* is:

95% Confidence Interval on PCC is:
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